你的位置:首页 > 技术文章 > AI助力新能源分析: 锂离子电池材料显微智能分析方案

技术文章

AI助力新能源分析: 锂离子电池材料显微智能分析方案

技术文章
        随着我国新能源汽车产业的规模越来越大,对动力锂电池的需求,也逐步增加。电动汽车的主要能量源是动力电池,其发展和应用在很大程度上受动力电池性能影响。锂离子电池发展至今,凭借其高电压、高能量密度、良好的循环性能和绿色环保等优势成为在新能源应用中广泛的化学储能器件之一。

图1:锂离子电池的组成示意图

 

       锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。随着对锂离子电池的研究不断深入,电池工业界正在迅速向更高能量密度和更低成本的电池技术努力,以达成零碳排放的目标。

 

       但是目前在锂电池使用或储存过程中仍会出现一定概率的失效,一类是锂离子电池的材料自身缺陷引起的失效,例如正负极的结构衰退,电解液分解,隔膜的老化等;另一类是锂离子电池使用及存储环境引起的失效,例如环境温度过高,充放电过快,过度充放等,都严重降低了锂电池的使用性能、一致性、可靠性和安全性。

图2:锂离子电池失效模式

 

       虽然产品的诞生伴随着失效,但只要充分了解失效原因,掌握分析失效的方法和利器,就能从根本上找到并解决失效问题。对于锂电池来说,其失效归根结底是材料的失效。例如,正极材料因局部Li+脱嵌速率不一致导致材料所受应力不均而产生的颗粒破碎;硅负极材料因充放电过程中发生体积膨胀收缩而出现的破碎粉化;隔膜孔隙阻塞等。电池性能和电池材料性质有着息息相关的关系,准确把握材料的特性,是解决电池问题并提升电池性能的重要途径之一。

 

软件特点简介

 

汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”LIBMAS—锂离子电池材料显微智能分析系统”(以下简称LIBMAS),将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。

 

       针对传统软件自动化程度不足,操作复杂的弊端,汇鸿智能科技可为客户量身定制专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、二次颗粒分布均匀性、开裂球识别、截面孔隙统计、隔膜材料孔隙分析等锂电池材料分析。

 

应用案例

01

01开裂球、截面孔隙识别

       通常在制备三元正极材料时,采用共沉淀法使亚微米一次粒子致密堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。

图1:软件智能区分开裂球和普通球

 

 

       通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图1。

       在锂电池中,锂离子在正极晶格中反复脱嵌,随着电流密度和颗粒尺寸的增加,仅仅几个循环就出现晶间裂纹。而产生的裂纹对电池性能、SOC、以及锂离子传输路径都会有一定影响。

图2:二次球截面孔隙识别

 

       正极颗粒内部通常为二次球颗粒形成的多晶结构,导致正极晶格在循环中容易发生各向异性体积变化,而产生孔隙。我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图2。使用LIBMAS对截面孔隙进行识别,以轮廓中心点为圆心画出同心圆,以各同心圆圆环内的孔隙率计算同心圆孔隙率RSD,见图3。

 

图3:二次球截面孔隙率统计及RSD计算

 

02

02团聚颗粒识别

       正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的粒径在几个到十几个微米之间的二次颗粒。

图4:一次颗粒团聚形成的二次球颗粒识别

 

       通常团聚体颗粒内部较为密实,一次粒子之间连接处存在晶界。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图4、图5。

图5:软件自动区分团聚颗粒及团聚颗粒截面

 

       相对于单独的纳米粒子,这种形貌的团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。

 

       然而在团聚体反复的充放电过程中,团聚体内部也反复经受一次颗粒体积变化产生的应力冲击,容易在一次颗粒之间的晶界处发生破碎。破碎后的颗粒不仅增大了活性物质的比表面积,进而加剧了活性物质和电解液之间的副反应。而且破碎后的一次粒子之间失去了有效的电接触,也进一步增加了电极材料的阻抗,不利于循环性能的保持。

 

03单晶颗粒识别

图6:单晶颗粒的识别

 

       团聚体的破碎受多种因素影响。减小体积变化程度可以减小应力应变对团聚体的损伤;另外,从前驱体和烧结工艺入手以尽可能增强烧成的团聚体颗粒内部密实度,增强一次粒子之间的结合力,从而提高团聚体颗粒抗破碎的能力。

 

       另外,相比易产生颗粒粉碎的多晶正极材料,许多研究已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图6、7。   

 

图7:单晶颗粒尺寸统计及分布图

 

04大小二次球识别

       除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图8、9。

图9:大小二次球颗粒分布均匀性统计

05隔膜孔隙率统计

       锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实,隔膜的微孔孔径分布越均匀,电池的电性能越优异。

       孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。

图10:隔膜孔隙识别及孔隙率统计

 

       汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图10、11。

 

图11:隔膜孔隙率统计结果及孔隙面积分布图

 

       针对锂电行业的特殊需求,汇鸿智能科技开发了一整套智能化锂离子电池材料分析系统。汇鸿智能科技公司是一家前沿微观AI图像分析生态平台开发公司,以“AI 即专家”为使命, 驱动AI技术,加速实验室智能化升级,构建实验室全场景智慧,为工业分析和质量控制赋能。

联系我们

地址:北京市朝阳区惠河南街南岸一号义安门39-110 传真: Email:sale@opton.com.cn
24小时在线客服,为您服务!

版权所有 © 2022 北京欧波同光学技术有限公司 备案号:京ICP备17017767号-4 技术支持:化工仪器网 管理登陆 GoogleSitemap

在线咨询
QQ客服
QQ:442575252
电话咨询
13126536208
关注微信